By Topic

Exact optimization for Markov random fields with convex priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
H. Ishikawa ; Courant Inst. of Math. Sci., New York Univ., NY, USA

We introduce a method to solve exactly a first order Markov random field optimization problem in more generality than was previously possible. The MRF has a prior term that is convex in terms of a linearly ordered label set. The method maps the problem into a minimum-cut problem for a directed graph, for which a globally optimal solution can be found in polynomial time. The convexity of the prior function in the energy is shown to be necessary and sufficient for the applicability of the method.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:25 ,  Issue: 10 )