By Topic

The invariant representations of a quadric cone and a twisted cubic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wu, Y.H. ; Nat. Lab. of Pattern Recognition, Inst. of Autom. Chinese Acad. of Sci., Beijing, China ; Hu, Z.Y.

Up to now, the shortest invariant representation of a quadric has 138 summands and there has been no invariant representation of a twisted cubic in 3D projective space, which limit to some extent the applications of invariants in 3D space. We give a very short invariant representation of a quadric cone, a special quadric, which has only two summands similar to the invariant representation of a planar conic, and give a short invariant representation of a twisted cubic. Then, a completely linear algorithm for generating the parametric equations of a twisted cubic is provided also. Finally, we exemplify some applications of our proposed invariant representations in the fields of computer vision and automated geometric theorem proving.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 10 )