By Topic

Robust online appearance models for visual tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jepson, A.D. ; Dept. of Comput. Sci., Toronto Univ., Ont., Canada ; Fleet, D.J. ; El-Maraghi, T.F.

We propose a framework for learning robust, adaptive, appearance models to be used for motion-based tracking of natural objects. The model adapts to slowly changing appearance, and it maintains a natural measure of the stability of the observed image structure during tracking. By identifying stable properties of appearance, we can weight them more heavily for motion estimation, while less stable properties can be proportionately downweighted. The appearance model involves a mixture of stable image structure, learned over long time courses, along with two-frame motion information and an outlier process. An online EM-algorithm is used to adapt the appearance model parameters over time. An implementation of this approach is developed for an appearance model based on the filter responses from a steerable pyramid. This model is used in a motion-based tracking algorithm to provide robustness in the face of image outliers, such as those caused by occlusions, while adapting to natural changes in appearance such as those due to facial expressions or variations in 3D pose.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 10 )