System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

On bending invariant signatures for surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elad, A. ; ioIMAGE Ltd., Herzliya Pituach, Israel ; Kimmel, R.

Isometric surfaces share the same geometric structure, also known as the "first fundamental form." For example, all possible bendings of a given surface that includes all length preserving deformations without tearing or stretching the surface are considered to be isometric. We present a method to construct a bending invariant signature for such surfaces. This invariant representation is an embedding of the geometric structure of the surface in a small dimensional Euclidean space in which geodesic distances are approximated by Euclidean ones. The bending invariant representation is constructed by first measuring the intergeodesic distances between uniformly distributed points on the surface. Next, a multidimensional scaling technique is applied to extract coordinates in a finite dimensional Euclidean space in which geodesic distances are replaced by Euclidean ones. Applying this transform to various surfaces with similar geodesic structures (first fundamental form) maps them into similar signature surfaces. We thereby translate the problem of matching nonrigid objects in various postures into a simpler problem of matching rigid objects. As an example, we show a simple surface classification method that uses our bending invariant signatures.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 10 )