By Topic

Hierarchical visualization of time-series data using switching linear dynamical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O. Zoeter ; Nijmegen Univ., Netherlands ; T. Heskes

We propose a novel visualization algorithm for high-dimensional time-series data. In contrast to most visualization techniques, we do not assume consecutive data points to be independent. The basic model is a linear dynamical system which can be seen as a dynamic extension of a probabilistic principal component model. A further extension to a particular switching linear dynamical system allows a representation of complex data onto multiple and even a hierarchy of plots. Using sensible approximations based on expectation propagation, the projections can be performed in essentially the same order of complexity as their static counterpart. We apply our method on a real-world data set with sensor readings from a paper machine.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:25 ,  Issue: 10 )