By Topic

Constructing parallel paths between two subcubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, G.-I. ; AT&T Bell Labs., Naperville, IL, USA ; Lai, Ten-Hwang

The authors consider a hypercube system that runs more than one job at a time, with each job allocated a subcube. They discuss the problem of migrating (relocating) a job from one subcube to another, assuming a circuit-switching hypercube network. An algorithm is presented for constructing parallel circuits between two subcubes so that the tasks of a job can be migrated simultaneously. It is shown that no matter how fragmented the hypercube is, one can always construct parallel paths between two given subcubes. Furthermore, one can always minimize the maximum length of the constructed circuits. A solution that minimizes the maximum length of the circuits will also minimize the total length. The circuits are mutually edge-disjoint and do not use any edge that has been used by other jobs. The time complexity of the algorithm is O(n2m), where n is the dimension of the hypercube system and m is the number of jobs already in the system

Published in:

Computers, IEEE Transactions on  (Volume:41 ,  Issue: 1 )