Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Performance-driven mapping for CPLD architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deming Chen ; Comput. Sci. Dept., Univ. of California, Los Angeles, CA, USA ; Cong, J. ; Ercegovac, M. ; Zhijun Huang

We present a performance-driven programmable logic array mapping algorithm (PLAmap) for complex programmable logic device architectures consisting of a large number of PLA-style logic cells. The primary objective of the algorithm is to minimize the depth of the mapped circuit. We also develop several techniques for area reduction, including threshold control of PLA fanouts and product terms, slack-time relaxation, and PLA packing. We compare PLAmap with a previous algorithm TEMPLA (Anderson and Brown 1998) and a commercial tool Altera Multiple Array MatriX (MAX) + PLUS II (Altera Corporation 2000) using Microelectronics Center of North Carolina (MCNC) benchmark circuits. With a relatively small area overhead, PLAmap reduces circuit depth by 50% compared to TEMPLA and reduces circuit delay by 48% compared to MAX + PLUS II v9.6.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:22 ,  Issue: 10 )