By Topic

A comprehensive signature analysis scheme for oscillation-test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jeongjin Roh ; Dept. of Electr. Eng., Hanyang Univ., Ansan, South Korea ; J. A. Abraham

A low-cost and comprehensive built-in self-test (BIST) methodology for analog and mixed-signal circuits is described. We implement a time-division multiplexing (TDM) comparator to analyze the response of a circuit under test with minimum hardware overhead. The TDM comparator scheme is an effective signature analyzer for on-chip analog response compaction and pass/fail decision. We apply this scheme to an oscillation-test environment and implement a low-cost and comprehensive vectorless BIST methodology for high fault and yield coverage. Our scheme allows a tolerance in the output response, a feature necessary for analog circuits. Both oscillation frequency and oscillation amplitude are measured indirectly to increase the fault coverage. We provide a theoretical analysis of the oscillation that explains why the amplitude measurement is essential. Simulation results demonstrate that the proposed scheme can significantly reduce test time of the oscillation-test while achieving higher fault coverage.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:22 ,  Issue: 10 )