By Topic

A low-power wide dynamic range envelope detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. M. Zhak ; Res. Lab. of Electron., Massachusetts Inst. of Technol., Cambridge, MA, USA ; M. W. Baker ; R. Sarpeshkar

We report a 75-dB 2.8-μW 100-Hz-10-kHz envelope detector in a 1.5-μm 2.8-V CMOS technology. The envelope detector performs input dc insensitive voltage-to-current converting rectification followed by novel nanopower current-mode peak detection. The use of a subthreshold wide linear range transconductor allows greater than 1.7-Vpp input voltage swings. We show theoretically that the optimal performance of this circuit is technology independent for the given topology and may be improved only by spending more power due to thermal noise rectification limits. A novel circuit topology is used to perform 140-nW peak detection with controllable attack and release time constants. We demonstrate good agreement of experimentally measured results with theory. The envelope detector is useful in low-power bionic implants for the deaf, hearing aids, and speech-recognition front-ends.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:38 ,  Issue: 10 )