By Topic

Optimal design of GaN-AlGaN Bragg-confined structures for intersubband absorption in the near-infrared spectral range

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
J. Radovanovic ; Inst. of Phys., Belgrade, Serbia ; V. Milanovic ; Z. Ikonic ; D. Indjin
more authors

A method is proposed for the design and optimization of structural parameters of GaN-AlGaN Bragg-confined structures with respect to peak intersubband absorption from the ground to the first excited state,1 → 2 electronic transition, in the near infrared spectral range. An above-the-barrier bound state was used to extend the range of transition energies above the values available in conventional quantum wells. Intrinsic polarization fields and nonparabolicity effects were taken into account. The selection of optimal parameters, maximizing the absorption at wavelengths of 1.55 and 1.3 μm, was performed by using a simulated annealing algorithm, and optimal structures with infinite superlattices as confinement regions were thus designed. These optimal parameters were then used to set realistic, finite structures with a small number of layers, the performance of which was re-evaluated by solving the Schrodinger-Poisson equation self-consistently for a few different levels and profiles of doping.

Published in:

IEEE Journal of Quantum Electronics  (Volume:39 ,  Issue: 10 )