By Topic

Efficient mapping algorithm of multilayer neural network on torus architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ayoubi, R.A. ; Dept. of Comput. Eng., Univ. of Balamand, Tripoli, Lebanon ; Bayoumi, M.A.

This paper presents a new efficient parallel implementation of neural networks on mesh-connected SIMD machines. A new algorithm to implement the recall and training phases of the multilayer perceptron network with back-error propagation is devised. The developed algorithm is much faster than other known algorithms of its class and comparable in speed to more complex architecture such as hypercube, without the added cost; it requires O(1) multiplications and O(log N) additions, whereas most others require O(N) multiplications and O(N) additions. The proposed algorithm maximizes parallelism by unfolding the ANN computation to its smallest computational primitives and processes these primitives in parallel.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:14 ,  Issue: 9 )