By Topic

A novel technique for full-wave modeling of large-scale three-dimensional high-speed on/off-chip interconnect structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jiao, D. ; Logic Technol. Dev., Intel Corp., Santa Clara, CA, USA ; Mazumder, M. ; Chakravarty, S. ; Dai, C.
more authors

This paper presents a novel, rigorous, and fast method for full-wave modeling of high-speed interconnect structures. In this method, the original wave propagation problem is represented into a generalized eigenvalue problem. The resulting eigenvalue representation can comprehend conductor and dielectric losses, arbitrary dielectric and conductor configurations, and arbitrary materials such as dispersive, and anisotropic media. The edge basis function is employed to accurately represent the unknown field, and the triangular element is adopted to flexibly model arbitrary geometry. A mode-matching technique applicable to lossy system is developed to solve large-scale 3D problems by using 2D-like CPU time and memory. A circuit-based extraction technique is developed to obtain S-parameters from the unknown fields. The proposed technique can generate S-parameters, full-wave RLGC, propagation constants, characteristic impedances, voltage, current, and field distributions, and hence yield a comprehensive representation of interconnect structures. Experimental and numerical results demonstrate its accuracy and efficiency.

Published in:

Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003. International Conference on

Date of Conference:

3-5 Sept. 2003