Cart (Loading....) | Create Account
Close category search window
 

Adaptive-critic-based optimal neurocontrol for synchronous generators in a power system using MLP/RBF neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jung-Wook Park ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Harley, R.G. ; Venayagamoorthy, G.K.

This paper presents a novel optimal neurocontroller that replaces the conventional controller (CONVC), which consists of the automatic voltage regulator and turbine governor, to control a synchronous generator in a power system using a multilayer perceptron neural network (MLPN) and a radial basis function neural network (RBFN). The heuristic dynamic programming (HDP) based on the adaptive critic design technique is used for the design of the neurocontroller. The performance of the MLPN-based HDP neurocontroller (MHDPC) is compared with the RBFN-based HDP neurocontroller (RHDPC) for small as well as large disturbances to a power system, and they are in turn compared with the CONVC. Simulation results are presented to show that the proposed neurocontrollers provide stable convergence with robustness, and the RHDPC outperforms the MHDPC and CONVC in terms of system damping and transient improvement.

Published in:

Industry Applications, IEEE Transactions on  (Volume:39 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.