By Topic

Distance sets for shape filters and shape recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Grigorescu ; Inst. of Math. & Comput. Sci., Univ. of Groningen, Netherlands ; N. Petkov

We introduce a novel rich local descriptor of an image point, we call the (labeled) distance set, which is determined by the spatial arrangement of image features around that point. We describe a two-dimensional (2D) visual object by the set of (labeled) distance sets associated with the feature points of that object. Based on a dissimilarity measure between (labeled) distance sets and a dissimilarity measure between sets of (labeled) distance sets, we address two problems that are often encountered in object recognition: object segmentation, for which we formulate a distance sets shape filter, and shape matching. The use of the shape filter is illustrated on printed and handwritten character recognition and detection of traffic signs in complex scenes. The shape comparison procedure is illustrated on handwritten character classification, COIL-20 database object recognition and MPEG-7 silhouette database retrieval.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 10 )