Cart (Loading....) | Create Account
Close category search window
 

A minimum entropy approach to adaptive image polygonization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hermes, L. ; Dept. of Comput. Sci. III, Rheinische Friedrich-Wilhelms-Univ., Bonn, Germany ; Buhmann, J.M.

This paper introduces a novel adaptive image segmentation algorithm which represents images by polygonal segments. The algorithm is based on an intuitive generative model for pixel intensities and its associated cost function which can be effectively optimized by a hierarchical triangulation algorithm. A triangular mesh is iteratively refined and reorganized to extract a compact description of the essential image structure. After analyzing fundamental convexity properties of our cost function, we adapt an information-theoretic bound to assess the statistical significance of a given triangulation step. The bound effectively defines a stopping criterion to limit the number of triangles in the mesh, thereby avoiding undesirable overfitting phenomena. It also facilitates the development of a multiscale variant of the triangulation algorithm, which substantially improves its computational demands. The algorithm has various applications in contextual classification, remote sensing, and visual object recognition. It is particularly suitable for the segmentation of noisy imagery.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 10 )

Date of Publication:

Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.