By Topic

Analysis of competitive power market with constant elasticity function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. H. M. Nguyen ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Kawloon, China ; K. P. Wong

A solution method, for competitive power markets formulated as a Cournot game, that allows equilibrium to be determined without an explicit model of aggregated demand is presented. The method determines market equilibrium for all feasible demand conditions and thus provides a perspective on the market, independent of representative demand function, that reveals the inherent tendencies of producers in the market. Numerical solutions are determined by use of the new controlled genetic algorithm and constraint handling techniques. The solutions give production and demand elasticity distributions of the market at any feasible equilibrium price and volume. The solution distributions evaluated for the market with unspecified demand functions, were found to be consistent with previous results obtained from markets with specific demand functions. The ability of the new approach to find all, and arbitrary, solutions allows specific markets to be examined, as well as very general observations to be made. Generally it was observed that: no inherent price constraint exists; price is more volatile for low volumes and high prices; market dominance and power are unaffected by price; and inelastic demand can give rise to equilibrium with lower price than responsive demand.

Published in:

IEE Proceedings - Generation, Transmission and Distribution  (Volume:150 ,  Issue: 5 )