By Topic

Thermally activated vortex nucleation as a function of thickness in submicron patterned permalloy thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Deak, James G. ; Micron Technol. Inc., Boise, ID, USA

Arrays of submicron patterned magnetic thin films often show tails in their hysteresis loops, which are usually attributed to either the coercivity distribution in the array or vortex formation/domain wall trapping in individual bits. In arrays of submicron-sized elliptical patterned bits, the tails can appear at less than the critical thickness for vortex formation, suggesting that vortices are unlikely. Thermal fluctuations, however, allow small magnetic systems to sample magnetic states that are normally inaccessible at zero temperature, which can result in different switching processes than would be expected based on zero-temperature simulations. In order to study the effect of thermal fluctuations on switching processes, arrays of submicron patterned magnetic films of different sizes and over a range of thickness were measured using the magnetooptic Kerr effect (MOKE) and compared with Langevin micromagnetic simulations. The comparison indicates that the presence of hysteresis loop tails in arrays of patterned bits is a result of vortex formation in individual bits.

Published in:

Magnetics, IEEE Transactions on  (Volume:39 ,  Issue: 5 )