By Topic

Micromagnetic analysis of bit decay in perpendicular recording media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Enhong Yuan ; Electr. & Comput. Eng. Dept., Univ. of Minnesota, Minneapolis, MN, USA ; Jianhua Xue ; Victora, R.H.

The life time of stored data depends on the storage density as well as the physical properties and microstructure of the media. Perpendicular media for ultra-high density recording needs to have high anisotropy to withstand thermal instabilities over long time. In this study, we used a micromagnetic model based on a scaling method to numerically calculate the percentage of magnetic decay caused by thermal fluctuations after ten years. Realistic grain configurations for 1 Tbit/in2 and 125 Gbit/in2 recording were used to seek the critical grain magnetization and anisotropy field of magnetic media that are thermally stable for ten years. For less than 10% decay, an HK of 20 kOe and MSgrain of 600 emu/cm3 is required. Alternatively, HK can be reduced to 16 kOe if MSgrain is 800 emu/cm3.

Published in:

Magnetics, IEEE Transactions on  (Volume:39 ,  Issue: 5 )