By Topic

Hybrid genetic algorithm for electromagnetic topology optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang-Hwan Im ; Sch. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., South Korea ; Hyun-Kyo Jung ; Yong-Joo Kim

This paper proposes a hybrid genetic algorithm (GA) for electromagnetic topology optimization. A two-dimensional (2-D) encoding technique, which considers the geometrical topology, is first applied to electromagnetics. Then, a 2-D geographic crossover is used as the crossover operator. A novel local optimization algorithm, called the on/off sensitivity method, hybridized with the 2-D encoded GA, improves the convergence characteristics. The algorithm was verified by applying it to various case studies, and the results are presented herein.

Published in:

Magnetics, IEEE Transactions on  (Volume:39 ,  Issue: 5 )