By Topic

Performance analysis of error propagation effects in the DFE for ATSC DTV receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyoung-Nam Kim ; Dept. of Electron. Eng., Pusan Nat. Univ., South Korea ; Sung Ik Park ; Seung Won Kim

The paper analyzes the error propagation phenomenon in the decision feedback equalizer (DFE) for the receivers of Advanced Television Systems Committee (ATSC) digital television (DTV) and presents the performance upper-limits of the DFE by comparing various error propagation cases and the no-error propagation case. As one approach to the performance limit, we consider a blind DFE, adopting a trellis decoder with a trace-back depth of 1 as a decision device. Through simulation, we show how much the DFE performance in ATSC DTV receivers is affected by error propagation. We found that while blind equalization is preferable to decision-directed (DD) equalization at signal-to-noise ratio (SNR) values less than 18 dB, DD equalization is superior to blind equalization at SNR values greater than 18 dB. In addition, symbol error rate curves quantitatively show that the performance difference in the DFE caused by error propagation becomes clearer at the trellis decoder following the DFE. The analysis results presented are very informative for developing equalization algorithms for ATSC DTV receivers.

Published in:

IEEE Transactions on Broadcasting  (Volume:49 ,  Issue: 3 )