Cart (Loading....) | Create Account
Close category search window

Analysis and simulation of a mid-infrared P+-InAs0.55Sb0.15P0.30/n0-InAs0.89Sb0.11/N+-InAs0.55Sb0.15P0.30 double heterojunction photodetector grown by LPE

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chakrabarti, P. ; Dept. of Electron. Eng., Banaras Hindu Univ., Varanasi, India ; Krier, A. ; Morgan, A.F.

A photovoltaic detector based on an N+-InAs0.55Sb0.15P0.30/n0-InAs0.89Sb0.$ d11/P+-InAs0.55Sb0.15P0.30 double heterostructure (DH) suitable for operation in the mid-infrared (MIR) spectral region (2 to 5 μm) at room temperature has been studied. A physics based closed form model of the device has been developed to investigate the relative importance of the different mechanisms which determine dark current and photoresponse. The results obtained on the basis of the model have been compared and contrasted with those obtained from experimental measurements on DH detectors fabricated previously in our laboratory using liquid phase epitaxy (LPE). The model helps to explain the various physical mechanisms that shape the characteristics of the device under room temperature operation. It can also be used to optimize the performance of the photodetector in respect of dark current, responsivity and detectivity. A comparison of theoretical predictions and experimental results revealed that Shockley-Read-Hall (SRH) recombination is more important than Auger recombination in determining the room temperature detector performance when the concentration of nonradiative recombination centers in our material exceeds 1017 cm-3. Furthermore, compositional grading in the cladding regions of the double heterostructure has been found to be responsible for the reduction of the detectivity of the device in the shorter wavelength region.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 10 )

Date of Publication:

Oct. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.