By Topic

Spectral cancellation of microstimulation artifact for simultaneous neural recording in situ

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. W. Gnadt ; Dept. of Neurobiol. & Behavior, Stony Brook Univ., NY, USA ; S. D. Echols ; A. Yildirim ; Honglei Zhang
more authors

A fundamental technical hurdle in systems neurophysiology has been to record the activity of individual neurons in situ while using microstimulation to activate inputs or outputs. Stimulation artifact at the recording electrode has largely limited the usefulness of combined stimulating and recording to using single stimulation pulses (e.g., orthodromic and antidromic activation) or to presenting brief trains of pulses to look for transient responses (e.g., paired-pulse stimulation). Using an adaptive filter, we have developed an on-line method that allows continuous extracellular isolation of individual neuron spikes during sustained experimental microstimulation. We show that the technique accurately and robustly recovers neural spikes from stimulation-corrupted records. Moreover, we demonstrate that the method should generalize to any recording situation where a stereotyped, triggered transient might obscure a neural event.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:50 ,  Issue: 10 )