By Topic

Time-delay neural network for the prediction of carbonation tower's temperature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dan Shi ; Dept. of Control Sci. & Eng., Zhejiang Univ., Hangzhou, China ; Hongjian Zhang ; Liming Yang

The carbonation tower is a key reactor to manufacturing synthetic soda ash using the Solvay process. Because of the complexity of the reaction in the tower, it is difficult to control such a nonlinear large-time-delay system with normal measurement instrumentation. To solve this problem, a time-delay neural network (TDNN) is used in the soft measurement model in this paper. A special back-propagation algorithm is developed to train the neural network. Compared with the model based on multilayered perceptron, it is shown that TDNN can describe the system's dynamic character better and predict much more precisely. The influences of the input variables to the output of the model are analyzed with the online data. Analysis results show this model matches the reaction kinetics and the real operating conditions.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:52 ,  Issue: 4 )