Cart (Loading....) | Create Account
Close category search window
 

Derivative-controlled design of linear-phase FIR filters via waveform moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Takei, Y. ; Dept. of Electr. Eng., Nagaoka Univ. of Technol., Niigata, Japan ; Nagato, K. ; Yoshikawa, T. ; Xi Zhang

A new method for designing linear-phase finite impulse response (FIR) filters is proposed by using the blockwise waveform moments. The proposed method yields linear-phase FIR filters whose magnitude response and its derivatives to a certain order take the prescribed values at equally spaced frequency points. The design procedure only needs to solve a system of linear equations, whose size is slightly smaller than the degree of the resulting filter. In addition, the inversion of the linear equations can be essentially precomputed. Therefore, the proposed design method is computationally efficient. In particular, for some important cases, i.e., the maximally flat R-regular Lth-band FIR filters, a closed-form formula can be obtained. It is also shown that the resulting R-regular Lth-band FIR filters have the zero intersymbol interference property.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 10 )

Date of Publication:

Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.