By Topic

Power-aware scheduling of conditional task graphs in real-time multiprocessor systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dongkun Shin ; Sch. of Comput. Sci., Seoul Nat. Univ., South Korea ; Jihong Kim

We propose a novel power-aware task scheduling algorithm for DVS-enabled real-time multiprocessor systems. Unlike the existing algorithms, the proposed DVS algorithm can handle conditional task graphs (CTGs) which model more complex precedence constraints. We first propose a condition-unaware task scheduling algorithm integrating the task ordering algorithm for CTGs and the task stretching algorithm for unconditional task graphs. We then describe a condition-aware task scheduling algorithm which assigns to each task the start time and the clock speed, taking account of the condition matching and task execution profiles. Experimental results show that the proposed condition-aware task scheduling algorithm can reduce the energy consumption by 50% on average over the non-DVS task scheduling algorithm.

Published in:

Low Power Electronics and Design, 2003. ISLPED '03. Proceedings of the 2003 International Symposium on

Date of Conference:

25-27 Aug. 2003