Cart (Loading....) | Create Account
Close category search window
 

Nanoscale soldering of positioned carbon nanotubes using highly conductive electron beam induced gold deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Madsen, D.N. ; Mikroelektron. Center, Tech. Univ. Denmark, Lyngby, Denmark ; Molhave, K. ; Mateiu, R. ; Boggild, P.
more authors

We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E-SEM) in the presence of a source of gold-organic precursor gas. Bridges deposited between suspended microelectrodes show resistivities down to 10-4 Ωcm and Transmission Electron Microscopy (TEM) of the deposits reveals a dense core of gold particles surrounded by a crust of small gold nanoparticles embedded in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days.

Published in:

Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on  (Volume:1 )

Date of Conference:

12-14 Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.