By Topic

Influence of external electric fields on electronic response and bandstructure of carbon nanotubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yan Li ; Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA ; Rotkin, S.V. ; Ravaioli, U.

We performed tight-binding calculation of the electronic properties of carbon nanotubes in a perpendicular electric field. Within the linear response limit, the dielectric function of a doped carbon nanotube is found to depend not only on its symmetry, but also on the Fermi level position and tube radius. Upon increasing the field, the mixing of neighboring sub bands results in metal-semiconductor transitions in both quasi-metallic and semiconducting nanotubes. The characteristic field strength of the transitions is calculated as a function of the tube radius. An optimal radius range to be used for band gap engineering is estimated for both types.

Published in:

Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on  (Volume:1 )

Date of Conference:

12-14 Aug. 2003