By Topic

Optimal blind carrier recovery for MPSK burst transmissions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yan Wang ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Serpedin, E. ; Ciblat, P.

The paper introduces and analyzes the asymptotic (large sample) performance of a family of blind feedforward nonlinear least-squares (NLS) estimators for joint estimation of carrier phase, frequency offset, and Doppler rate for burst-mode phase-shift keying transmissions. An optimal or "matched" nonlinear estimator that exhibits the smallest asymptotic variance within the family of envisaged blind NLS estimators is developed. The asymptotic variance of these estimators is established in closed-form expression and shown to approach the Cramer-Rao lower bound of an unmodulated carrier at medium and high signal-to-noise ratios (SNR). Monomial nonlinear estimators that do not depend on the SNR are also introduced and shown to perform similarly to the SNR-dependent matched nonlinear estimator. Computer simulations are presented to corroborate the theoretical performance analysis.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 9 )