By Topic

Exploiting faster-than-Nyquist signaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liveris, A.D. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Georghiades, C.N.

Faster-than-Nyquist signaling introduces intersymbol interference, but increases the bit rate while preserving the signaling bandwidth. For sinc pulses, it has been established that with a small increase in the signaling rate beyond the Nyquist rate, there is no reduction in the minimum Euclidean distance for binary signaling. We generalize these observations to the family of raised-cosine pulses. The structure of the error events that reduce the minimum distance is examined, and constrained coding ideas are suggested that theoretically allow even faster signaling. Then we propose ways of achieving these gains practically by designing appropriate constrained codes and through equalization and iterative joint equalization and decoding (turbo equalization).

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 9 )