Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

On the joint source-channel decoding of variable-length encoded sources: the additive-Markov case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Subbalakshmi, K.P. ; Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA ; Vaisey, J.

We propose an optimal joint source-channel maximum a posteriori probability decoder for variable-length encoded sources transmitted over a wireless channel, modeled as an additive-Markov channel. The state space introduced by the authors in a previous paper is used to take care of the unique challenges posed by variable-length codes. Simulations demonstrate, that this decoder performs substantially better than the standard Huffman decoder for a simple test source and is robust to inaccuracies in channel statistics estimates. The proposed algorithm also compares favorably to a standard forward error correction-based system.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 9 )