By Topic

A unified framework for input-to-state stability in systems with two time scales

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Teel, A.R. ; Electr. & Comput. Eng. Dept., Univ. of California, Santa Barbara, CA, USA ; Moreau, L. ; Nesic, D.

This paper develops a unified framework for studying robustness of the input-to-state stability (ISS) property and presents new results on robustness of ISS to slowly varying parameters, to rapidly varying signals, and to generalized singular perturbations. The common feature in these problems is a time-scale separation between slow and fast variables which permits the definition of a boundary layer system like in classical singular perturbation theory. To address various robustness problems simultaneously, the asymptotic behavior of the boundary layer is allowed to be complex and it generates an average for the derivative of the slow state variables. The main results establish that if the boundary layer and averaged systems are ISS then the ISS bounds also hold for the actual system with an offset that converges to zero with the parameter that characterizes the separation of time-scales. The generality of the framework is illustrated by making connection to various classical two time-scale problems and suggesting extensions.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 9 )