By Topic

Electron energy state spin-splitting in nanoscale InAs/GaAs semiconductor quantum dots and rings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yiming Li ; Dept. of Nano Device Technol., Nat. Nano Device Lab., Hsinchu, Taiwan ; Hsiao-Mei Lu

We study the effect of spin-orbit interaction for different shape semiconductor quantum nanostructures. The effective one-band Hamiltonian approximation, the position- and energy-dependent quasi-particle effective mass approximation, the finite hard wall confinement potential, and the spin-dependent Ben Daniel-Duke boundary conditions are considered and solved numerically in this work. The spin-orbit interaction which comes from the spin-dependent boundary conditions is characterized for InAs/GaAs quantum dots and quantum rings. We find it can significantly modify the electron energy spectrum for InAs semiconductor quantum dots and quantum rings built in the GaAs matrix. The energy state spin-splitting strongly depends on the geometry of nanostructures. It has an experimentally measurable magnitude for ultra-small quantum dots and quantum rings with non-zero angular momentum.

Published in:

Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on  (Volume:2 )

Date of Conference:

12-14 Aug. 2003