Cart (Loading....) | Create Account
Close category search window
 

Self-field and geometry effects in transport current applications of multifilamentary Bi-2223/Ag conductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stavrev, S. ; Lab. of Nonlinear Syst., Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; Dutoit, B. ; Grilli, F.

This paper describes quantitatively the influence of the self-field and the cross-sectional geometry on the effective critical current and the ac losses in transport current applications of nontwisted multifilamentary Bi-2223/Ag conductors. The results are obtained with finite-element method simulations. The numerical implementation includes an anisotropic model for the dependence of the critical current density Jc and the power index n on the local parallel and perpendicular magnetic field components. The relation is given between the intrinsic critical current density and the effective critical current for different multifilamentary conductors. Shown are examples of the current and magnetic flux density distributions in order to demonstrate their effect on the ac losses in self-field.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.