Cart (Loading....) | Create Account
Close category search window
 

High-performance optical-label switching packet routers and smart edge routers for the next-generation Internet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Yoo, S.J.B. ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA ; Fei Xue ; Bansal, Y. ; Taylor, J.
more authors

This paper discusses the architecture, protocol, analysis, and experimentation of optical packet switching routers incorporating optical-label switching (OLS) technologies and electronic edge routers with traffic shaping capabilities. The core optical router incorporates all-optical switching with contention resolution in wavelength, time, and space domains. It is also capable of accommodating traffic of any protocol and format, and supports packet, flow, burst, and circuit traffic. The edge router is designed to achieve traffic shaping with consideration for quality of service and priority based class-of-service. Simulation results show packet loss rates below 0.3% at load 0.7 and jitter values below 18 μs. The traffic shaping reduces the packet loss rate by a factor of ∼5 while adding negligible additional latency. The OLS core routers and the electronic edge routers are constructed including the field-programmable-gate-arrays incorporating the wavelength-aware forwarding and contention resolution algorithms. The experiment shows optical-label-based packet switching with a packet loss rate near 0.2%.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:21 ,  Issue: 7 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.