By Topic

A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mizuochi, T. ; Inf. Technol. R&D Center, Mitsubishi Electr. Corp., Kamakura, Japan ; Ishida, K. ; Kobayashi, T. ; Abe, J.
more authors

We have compared experimentally the transmission performance of return-to-zero differential phase-shift keying (RZ-DPSK) with RZ-ON-OFF keying (OOK), nonreturn-to-zero differential phase-shift keying (NRZ-DPSK), and NRZ-OOK for 100×10-Gb/s transmission with a spectral efficiency of 0.22 b/s/Hz over transoceanic distances. The Q degradation of the RZ-DPSK after transmission over 9180 km was 3 dB greater than that of RZ-OOK. The experimental results clearly showed the major cause of degradation for DPSK is not cross-phase modulation but self-phase modulation. The calculated nonlinear phase noise, i.e., the Gordon-Mollenauer effect, agreed with the experimental results. A distributed-Raman-amplifier assisted erbium-doped-fiber-amplified transmission line acted well in reducing the nonlinear phase noise.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 9 )