By Topic

Feedback controller design for a spatially distributed system: the paper machine problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. E. Stewart ; Honeywell Ind. Solutions, Vancouver, BC, Canada ; D. M. Gorinevsky ; G. A. Dumont

This paper reports on the development and implementation of an algorithm for the design of spatially distributed feedback controllers for the wide variety of physical processes that are included in cross-directional (CD) control of industrial paper machines. The spatial and temporal structure of this class of process models is exploited in the use of the 2D frequency domain for analysis and 2D loop shaping design of feedback controllers. This algorithm forms the basis of a software tool that has recently been implemented in a commercial product and its use is illustrated for tuning CD controllers on two different industrial paper machines. The first example describes the use of the tool in stabilizing an unstable closed-loop system by retuning the distributed controller. The second paper machine example exposes an underperforming controller. Subsequent retuning of the controller resulted in a dramatic performance improvement.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:11 ,  Issue: 5 )