Cart (Loading....) | Create Account
Close category search window
 

Asymptotic analysis of the conventional decision feedback receiver in fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Djonin, D.V. ; Dept. of Electr. & Comput. Eng., Univ. of Victoria, BC, Canada ; Bhargava, V.K.

Spectral efficiency presents the ultimate limit on data rate per unit bandwidth of a certain communication system. For direct-sequence code-division multiple access systems, the spectral efficiency has been derived in case of synchronous reception for optimal and linear multiuser receivers, flat-fading and nonfading environments, as well as single and multicell cellular networks. The most pervasive model employed in all these analyses is the large system random signature model. For the decision feedback receivers, previous research handled only the nonfading case while the case of fading channels remained unknown. This paper analyzes the spectral efficiency of the popular conventional decision feedback receiver (CDFR) in flat- and frequency-selective fading channels with and without power ordering. Results show that in the case of power ordering before cancellation and very large system loads, the spectral efficiency of this receiver in fading channels can be even larger than in the case of channels with no fading. We also discuss and identify optimal power control laws for the CDFR with and without power ordering. The power control law which equalizes single-user capacities in the case of power ordering is also discussed.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:2 ,  Issue: 5 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.