By Topic

CDMA downlink interference suppression using I/Q projection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Interference suppression at the receiver can be used to improve performance and capacity in the downlink of direct-sequence code-division multiple-access systems. In this paper, an interference suppression technique is developed which uses partial knowledge of spreading sequences to cancel a group of interfering signals. Specifically, knowledge of a complex scrambling sequence is used to project the desired signal away from the interference in the in-phase/quadrature (I/Q) complex plane. A maximum likelihood receiver formulation is used, treating both the desired signal and interference as being conditionally noncircular. A zero-forcing equalization approach is used to preserve orthogonality between signals from the same base station. The development of the technique is based on the assumption that the group of signals corresponds to another base station that does not transmit the signal of interest. However, the technique is also applied to the path diversity scenario (dispersion, soft handoff, transmit delay diversity), in which the group of interfering signals includes a desired signal component. The approach, referred to as I/Q projection, provides significant gains when performance is interference limited.

Published in:

IEEE Transactions on Wireless Communications  (Volume:2 ,  Issue: 5 )