Cart (Loading....) | Create Account
Close category search window

Stochastic assembly of sublithographic nanoscale interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
DeHon, A. ; Dept. of Comput. Sci., California Inst. of Technol., Pasadena, CA, USA ; Lincoln, P. ; Savage, J.E.

We describe a technique for addressing individual nanoscale wires with microscale control wires without using lithographic-scale processing to define nanoscale dimensions. Such a scheme is necessary to exploit sublithographic nanoscale storage and computational devices. Our technique uses modulation doping to address individual nanowires and self-assembly to organize them into nanoscale-pitch decoder arrays. We show that if coded nanowires are chosen at random from a sufficiently large population, we can ensure that a large fraction of the selected nanowires have unique addresses. For example, we show that N lines can be uniquely addressed over 99% of the time using no more than 2.2log2(N)+11 address wires. We further show a hybrid decoder scheme that only needs to address N=O(Wlitho-pitch/Wnano-pitch) wires at a time through this stochastic scheme; as a result, the number of unique codes required for the nanowires does not grow with decoder size. We give an O(N2) procedure to discover the addresses which are present. We also demonstrate schemes that tolerate the misalignment of nanowires which can occur during the self-assembly process.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:2 ,  Issue: 3 )

Date of Publication:

Sept. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.