By Topic

Periodic defects in 2D-PBG materials: full-wave analysis and design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. Frezza ; Dept. of Electron. Eng., Univ. of Rome, Italy ; L. Pajewski ; G. Schettini

In this paper, an accurate and efficient characterization of two-dimensional photonic bandgap structures with periodic defects is performed, which exploits a full-wave diffraction theory developed for one-dimensional gratings. The high convergence rate of the proposed technique is demonstrated. Results are presented for both TE and TM polarizations, showing the efficiencies as a function of wavelength, incidence angle, geometrical and physical parameters. A comparison with other theoretical results reported in the literature is shown with a good agreement. The transmission properties of photonic crystals with periodic defects are studied, investigating the effects of the variation of geometrical and physical parameters; design efficiency maps and formulas are given; moreover, the application of the analyzed structures as filters is discussed.

Published in:

IEEE Transactions on Nanotechnology  (Volume:2 ,  Issue: 3 )