By Topic

Test-decompression mechanism using a variable-length multiple-polynomial LFSR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hong-Sik Kim ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Yongjoon Kim ; Sungho Kang

A new test-decompression methodology using a variable-rank multiple-polynomial linear feedback shift register (MP-LFSR) is proposed. In the proposed reseeding scheme, a test cube with a large number of specified bits is encoded with a high-rank polynomial, while a test cube with a small number of specified bits is encoded with a low-rank polynomial. Therefore, according to the number of specified bits in each test cube, the size of the encoded data can be optimally reduced. A variable-rank MP-LFSR can be implemented with a slight modification of a conventional MP-LFSR. The experimental results on the largest ISCAS'89 benchmark circuits show that the proposed methodology can provide much better encoding efficiency than the previous methods with adequate hardware overhead.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:11 ,  Issue: 4 )