By Topic

Switching activity estimation of VLSI circuits using Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhanja, S. ; Dept. of Electr. Eng., Univ. of South Florida, Tampa, FL, USA ; Ranganathan, N.

Switching activity estimation is an important aspect of power estimation at circuit level. Switching activity in a node is temporally correlated with its previous value and is spatially correlated with other nodes in the circuit. It is important to capture the effects of such correlations while estimating the switching activity of a circuit. In this paper, we propose a new switching probability model for combinational circuits that uses a logic-induced directed-acyclic graph (LIDAG) and prove that such a graph corresponds to a Bayesian network (BN), which is guaranteed to map all the dependencies inherent in the circuit. BNs can be used to effectively model complex conditional dependencies over a set of random variables. The BN inference schemes serve as a computational mechanism that transforms the LIDAG into a junction tree of cliques to allow for probability propagation by local message passing. The proposed approach is accurate and fast. Switching activity estimation of ISCAS and MCNC circuits with random and biased input streams yield high accuracy (average mean error=0.002) and low computational time (average elapsed time including CPU, memory access and I/O time for the benchmark circuits=3.93 s).

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:11 ,  Issue: 4 )