Cart (Loading....) | Create Account
Close category search window
 

Neural network-based assessment of prognostic markers and outcome prediction in bilharziasis-associated bladder cancer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Ji ; Sch. of Math. & Inf. Sci., Coventry Univ., UK ; Naguib, R.N.G. ; Ghoneim, M.A.

In this paper the potential value of two prognostic factors, namely, bilharziasis status and tumor histological type, is investigated in relation to their abilities to predict disease progression and outcome of patients with bladder cancer, using radial basis function (RBF) neural networks. The bladder cancer data set is described by eight clinical and pathological markers. Two outcomes are of interest: either a patient is alive and free of disease or the patient is dead within five years of diagnosis. Three hundred and twenty-one (321) patients are involved in this retrospective study, 83.5% of whom had been confirmed with bilharziasis history. Selected marker subsets are examined to improve the outcome predictive accuracy and to evaluate the effects of the assessed prognostic factors on such outcome. The highest predictive accuracy for patients with bladder adenocarcinoma, as obtained from the RBF network, is found to be 85% with one subset of markers. The predictive analysis shows that bilharziasis history and patients' histology type are both important prognostic factors in prediction and, for each histology type, different marker combinations with significant characteristics have been observed.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:7 ,  Issue: 3 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.