Cart (Loading....) | Create Account
Close category search window
 

Properties of space-time bit-interleaved coded modulation systems in fast Rayleigh fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daeyoung Park ; Sch. of Electr. Eng., Seoul Nat. Univ., South Korea ; Myung-Kwang Byun ; Byeong Gi Lee

This paper investigate the properties of space-time bit-interleaved coded modulation (ST-BICM) systems in fast Rayleigh fading channels. We first show that ST-BICM with QPSK signaling in fast fading channels possesses the uniform distance property, which makes performance analysis tractable. We also derive the probability distribution of the squared Euclidean distance between space-time symbols assuming uniform bit-interleaving. Based on the distribution, we show that the diversity order for each codeword pair becomes maximized as the frame length becomes sufficiently long. We analyze the performance of ST-BICM in fast fading channels by deriving an FER upper bound. The derived bound turns out very accurate, requiring only the distance spectrum of the binary channel codes of ST-BICM. Numerical results demonstrate that the bound is tight enough to render an accurate estimate of performance of ST-BICM systems.

Published in:

Information Theory, 2003. Proceedings. IEEE International Symposium on

Date of Conference:

29 June-4 July 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.