Cart (Loading....) | Create Account
Close category search window
 

Automatic Linguistic Indexing of Pictures by a statistical modeling approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia Li ; Dept. of Stat., Pennsylvania State Univ., University Park, PA, USA ; Wang, J.Z.

Automatic linguistic indexing of pictures is an important but highly challenging problem for researchers in computer vision and content-based image retrieval. In this paper, we introduce a statistical modeling approach to this problem. Categorized images are used to train a dictionary of hundreds of statistical models each representing a concept. Images of any given concept are regarded as instances of a stochastic process that characterizes the concept. To measure the extent of association between an image and the textual description of a concept, the likelihood of the occurrence of the image based on the characterizing stochastic process is computed. A high likelihood indicates a strong association. In our experimental implementation, we focus on a particular group of stochastic processes, that is, the two-dimensional multiresolution hidden Markov models (2D MHMMs). We implemented and tested our ALIP (Automatic Linguistic Indexing of Pictures) system on a photographic image database of 600 different concepts, each with about 40 training images. The system is evaluated quantitatively using more than 4,600 images outside the training database and compared with a random annotation scheme. Experiments have demonstrated the good accuracy of the system and its high potential in linguistic indexing of photographic images.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 9 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.