By Topic

Deforming Catmull-Clark subdivision surfaces for computer graphics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Abbas ; Dept. of Comput. Sci., Univ. of Balamand, Tripoli, Lebanon ; A. H. Nasri

Summary form only given. A polygonal complex is a polygonal mesh that defines a curve with additional differential information such as tangent plane or normal and curvature values. In this sense, a polygonal complex corresponds to a curve interpolated by the limit surface of any polygonal mesh embodying it. We advance an approach for the deformation of subdivision surfaces under interpolation constraints. This is achieved by allowing the user to tag a configuration consisting of points, points with normal, or even control polygons and to deform the surface while maintaining the interpolation constraints. The constraints information can be converted, by means of a graphical user interface, into scalars defining various transformation parameters which have the ability to deform the surface when applied to the faces of the complex.

Published in:

Computer Systems and Applications, 2003. Book of Abstracts. ACS/IEEE International Conference on

Date of Conference:

14-18 July 2003