Cart (Loading....) | Create Account
Close category search window

An optimal DNA segmentation based on the MDL principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Szpankowski, W. ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Ren, W. ; Szpankowski, Lukasz

The biological world is highly stochastic as well as inhomogeneous in its behavior. The transition between homogeneous and inhomogeneous regions of DNA, known also as change points, carry important biological information. Our goal is to employ rigorous methods of information theory to quantify structural properties of DNA sequences. In particular, we adopt the Stein-Ziv lemma to find asymptotically optimal discriminant function that determines whether two DNA segments are generated by the same source and assuring exponentially small false positives. Then we apply the minimum description length (MDL) principle to select parameters of our segmentation algorithm. Finally, we perform extensive experimental work on human chromosome 9. After grouping A and G (purines) and T and C (pyrimidines) we discover change points between coding and noncoding regions as well as the beginning of a CpG island.

Published in:

Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE

Date of Conference:

11-14 Aug. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.