By Topic

Anticlustal: multiple sequence alignment by antipole clustering and linear approximate 1-median computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
C. Di Pietro ; Dipt. di Sci. Biomediche, Catania Univ., Italy ; V. Di Pietro ; G. Emmanuele ; A. Ferro
more authors

In this paper we present a new multiple sequence alignment (MSA) algorithm called AntiClustAl. The method makes use of the commonly used idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process in a bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomised tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high amino acid conservation during evolution of Xenopus laevis SOD2 is also cited.

Published in:

Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE

Date of Conference:

11-14 Aug. 2003