By Topic

Adaptive fault recovery for networked reconfigurable systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weifeng Xu ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts, Amherst, MA, USA ; Ramanarayanan, R. ; Tessier, R.

The device-level size and complexity of reconfigurable architectures makes fault tolerance an important concern in system design. In this paper, we introduce a fully automated fault recovery system for networked systems, which contain FPGAs (field programmable gate arrays). If a fault is detected hat cannot be addressed locally, fault information is transferred to a reconfiguration server. Following design recompilation to avoid the fault, a new FPGA configuration is returned to the remote system and computation is reinitiated. To illustrate the benefit of this approach, we have implemented a complete fault recovery system, which requires no manual intervention. An important part of the system is a timing-driven incremental router for Xilinx Virtex devices. This router is directly interfaced to Xilinx JBits and uses no CAD tools from the standard Xilinx Alliance tool flow. Our completed system has been applied to three benchmark designs and exhibits complete fault recovery in up to 12x less time than the standard incremental Xilinx PAR flow.

Published in:

Field-Programmable Custom Computing Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on

Date of Conference:

9-11 April 2003