By Topic

A thickness-shear quartz resonator force sensor with dual-mode temperature compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zheyao Wang ; Inst. of Microelectron., Tsinghua Univ., Beijing, China ; Huizhong Zhu ; Yonggui Dong ; Feng, Guanping

An AT-cut thickness-shear quartz crystal resonator (QXR) has been used as a force sensing and self-temperature-sensing (STS) element to develop a digital output force sensor. The QXR is fixed in a two-line mounting configuration in a cylindrical metal shell by double diaphragms, through which a diametric force proportional to the unknown force is applied to the QXR. The double diaphragms improve the reliability and the mechanical stability of the sensor significantly. In order to increase the measurement range and the sensitivity, the energy trapping-based QXR is cut to a symmetrical, incomplete circular shape to decrease stress concentration. Because operating the QXR in dual-mode excitation allows the separation of force change effects from temperature change effects, force measurement and STS are accomplished simultaneously with the same QXR. The structure and the configuration are optimized with theoretical analysis and FEM. The dual-mode STS and temperature compensation are described in detail, as well as a trimming method to reduce activity dips of AT-cut QXRs.

Published in:

Sensors Journal, IEEE  (Volume:3 ,  Issue: 4 )